GRADUATE STUDY IN BIOENGINEERING
Rice University

www.bioe.rice.edu

For admission in 2017

The Rice University Department of Bioengineering has been ranked among the nation's top 10 bioengineering/biomedical engineering graduate programs for the past eight consecutive years. Our graduate program offers innovative training and curriculum to prepare the next generation of leaders in basic, applied and translational research at the interface of biology and engineering.

The cornerstone of our success as a leader in bioengineering is capitalizing on Rice’s proximity to the Texas Medical Center (TMC), the largest medical center in the world, which has promoted the development of long-term collaborative efforts with the member institutions of the TMC. In addition to the numerous projects between investigators at Rice’s BioScience Research Collaborative and their TMC collaborators, significant new awards include: three Cancer Prevention and Research Institute of Texas (CPRIT) grants, totaling $12 million; a $5.1 million grant from the National Institutes of Health (NIH) to use tissue engineering techniques to study gastrointestinal disease; a $2 million grant from the National Cancer Institute to develop gene therapies to combat metastatic ovarian cancer; a $3 million grant from the National Cancer Institute to fund the design and validation of polymerase chain reaction primers and instruments for low-cost, point-of-care analysis of cancer-specific mutations; a $2.5 million grant from the National Human Genome Research Institute to develop probes that help next-generation sequencing find and profile disease-causing DNA sequence variants; and a $2 million training program for pre- and postdoctoral fellows in interdisciplinary translational cancer nanotechnology funded by the NIH's National Cancer Institute.

As a member institution of the TMC and through the university's research centers and institutes, we have built numerous interdisciplinary partnerships in education, research and outreach. Working and learning in this environment fosters cooperation with leaders in every specialty of basic science and medicine while providing our graduate students with hands-on training in cutting-edge bioengineering research.

Total research expenditures for fiscal year 2015 were $14.4 million. Approximately 140 graduate students are enrolled in the program. The department has 28 teaching and research faculty members, 20 multidisciplinary joint appointments within the science and engineering departments at Rice, and approximately 35 adjunct faculty members, who work predominantly in the TMC.

THE PROGRAM

The bioengineering graduate program draws on interdisciplinary skills that reach from the biological sciences to modern materials science, systems modeling, computer science, and bioprocess design. To prepare students for leadership roles in independent or collaborative research and development in industry or academia, our comprehensive curriculum provides a fundamental understanding of basic life and medical sciences, as well as advanced analytical and engineering expertise. Innovative training programs also give our students additional hands-on experience in translational research that transfers bioengineering advances from bench to bedside.

The department offers programs of graduate study leading to a doctor of philosophy (Ph.D.) degree in bioengineering. A joint M.D./Ph.D. is offered between the Rice Department of Bioengineering and Baylor College of Medicine.

The M.B.E. is a widely recognized, nonthesis degree. The typical course of study for an M.B.E. is one year and part-time study options are available for individuals who want to continue working. A new track in Global Medical Innovation (GMI) focuses on project-based design curriculum to prepare students for careers in medical technology though education in innovation, emerging market design projects based on real-world clinical challenges, and leadership experiences and industry internships.

The typical course of study for a Ph.D. degree in bioengineering is four to five years. In the fall semester of the first year, students select their thesis adviser. A thesis proposal must be completed
by the end of summer of the second year. Throughout their course of study, students complete two and-one-half teaching assignments, generally requiring six to ten hours/week for a semester. For those students planning an academic career, more involved teaching opportunities are available. An internship in industry, academia, clinical and national or international laboratories provides an opportunity for real-world exposure and/or broadens a student's research tools and teaching techniques.

FACULTY/RESEARCH

Rebekah A. Drezek. Professor of Bioengineering and of Electrical and Computer Engineering. B.S. (1996) Duke University; M.S. (1998), Ph.D. (2001) University of Texas at Austin, Postdoc (2001-2002) University of Texas MD Anderson Cancer Center. Research interests: Interface of basic, applied and translational research in medicine, engineering and nanotechnology to develop minimally invasive photonics-based imaging approaches. This includes new optical spectroscopy and imaging instrumentation and molecular-specific optical contrast agents; experimental studies into the biophysical origins of measured optical signals; and computational modeling of the interaction of light and biological tissue.

renal platelet thrombosis in the hemolytic-uremic syndrome (HUS).

Rebecca Richards-Kortum. Malcolm Gillis University Professor, Director of Rice 360°: Institute for Global Health; B.S. (1985) University of Nebraska at Lincoln; M.S. (1987), Ph.D. (1990) Massachusetts Institute of Technology. Research interests: Specializes in designing affordable, robust diagnostic systems for cancer and infectious diseases. Develops high-resolution optical imaging systems for the early detection of precancerous changes, with active clinical trials in Malawi, China, Botswana, Brazil, and El Salvador. Develops molecular assays for detection of infectious diseases including HIV and malaria. Develops low-cost equipment to improve neonatal and maternal care. Member, National Academy of Sciences; member, National Academy of Engineering; member, American Academy of Arts and Sciences; and MacArthur Fellow.

processors. The synthetic viruses are designed to seek out and deliver genetic cargo into target sites of pathology for the treatment of human diseases and disorders.

FACULTY/TEACHING

Eric Richardson. Lecturer and Director, Global Medical Innovation (GMI) track. B.S. (2005) Brigham Young University; Ph.D. (2009) University of Minnesota. Focus: Teaches graduate curriculum, and is an instructor and mentor for all capstone design course sequences.

FACULTY/EMERITUS

William W. Akers. Professor Emeritus of Bioengineering; Professor Emeritus of Chemical and Biomolecular Engineering. B.S. (1943) Texas Tech University, Ph.D. (1950) University of Michigan.

J. David Hellums. Professor Emeritus and Research Professor of Bioengineering and Chemical and Biomolecular Engineering. B.S.Ch.E. (1950), M.S. (1957) University of Texas at Austin, Ph.D. (1961) University of Michigan.

FACULTY/JOINT APPOINTMENTS

Matthew Bennett. Associate Professor, BioSciences and of Bioengineering

John Clark, Jr. Professor, Electrical and Computer Engineering, and Bioengineering

Fathi Ghorbel. Professor, Mechanical Engineering and of Bioengineering

Ramon Gonzalez. Professor, Chemical and Biomolecular Engineering, and of Bioengineering

Naomi Halas. Stanley C. Moore Professor of Electrical and Computer Engineering; Professor, Bioengineering, Chemistry, and Physics

Jeffrey Hartgerink. Professor, Chemistry and of Bioengineering

Lydia Kavraki. Noah Harding Professor of Computer Science and of Bioengineering

Caleb Kemere. Assistant Professor, Electrical and Computer Engineering, and of Bioengineering

Ching-Hwa Kiang. Associate Professor, Physics and Astronomy, and of Bioengineering

Marek Kimmel. Professor, Statistics and of Bioengineering

Angel Martí. Associate Professor, Chemistry, Bioengineering, Materials Science and Nanoengineering

Marie Lynn Miranda. Professor, Statistics; and Howard R. Hughes Provost

Deepak Nagrath. Assistant Professor, Chemical and Biomolecular
RESEARCH FOCUS AREAS

The Department of Bioengineering faculty members have diverse research interests focused on applying engineering principles and developing cutting-edge technologies to solve basic science and medical problems. Applicants are asked to note one or more focus areas of interest in their application. Specific areas include:

Biomaterials and Drug Delivery
The Biomaterials and Drug Delivery group focuses on the synthesis, fabrication, and evaluation of biomaterials, including nanobiomaterials for important applications in biomedicine. Their research efforts emphasize the development of new or improved biomaterials with exciting physical, chemical, and biological properties. These innovative materials are exploited for a variety of technologies, including imaging contrast agents, tissue engineering scaffolds, drug delivery, and artificial viruses for gene therapy. Researchers include: Drs. Bao, Diehl, Ma, Mikos, Miller, Suh, Tabor, and Veiseh.

Biomedical Imaging and Diagnostics
Biomedical Imaging and Diagnostics faculty conduct research in translational molecular imaging and diagnostics. Their multidisciplinary efforts focus on the development of novel, nanoscale contrast agents for molecular imaging as well as the development of hardware systems to image and monitor cancers and other disease processes in vivo in real time. Their research leverages the department’s unique capabilities in nanobiotechnology with application in basic science and translational biomedical application. Researchers include: Drs. Bao, Drezek, Miller, Richards-Kortum, Suh, Tkaczyk, Veiseh, and Zhang.

Cellular and Biomolecular Engineering
This area has enormous potential to make truly significant contributions to mankind in both medical and nonmedical fields over the next decades. Much of this group’s research is focused at the cellular and molecular scales. They apply the principles and tools derived from engineering to solve a host of problems in cellular and molecular biology, thus enabling new types of studies of biological systems. Researchers include: Drs. Bao, Deem, Diehl, Grande-Allen, Igoshin, Levine, Ma, Mikos, Miller, Moake, Raphael, San, Suh, Tabor, Veiseh, and Zhang.

Computational and Theoretical Bioengineering
Natural systems from our world and engineered systems from biotechnology offer a wide variety of phenomena for study. New field-theoretic techniques, new computer simulation methods and new random energy models have resulted. The Computational and Theoretical Bioengineering group works to explain, model and provide the means to manipulate medically related biological systems. Investigations range from biomechanics to protein–protein interactions to stem cell differentiation and immune system therapies. Researchers include: Drs. Deem, Diehl, Grande-Allen, Igoshin, Jacot, Levine, Ma, Mikos, Raphael, San, Tabor, and Zhang.

Systems and Synthetic Biology
Natural systems from our world and engineered systems from biotechnology offer a wide variety of phenomena for study. New field-theoretic techniques, new computer simulation methods and new random energy models have resulted. The Computational and Theoretical Bioengineering group works to explain, model and provide the means to manipulate medically related biological systems. Investigations range from biomechanics to protein–protein interactions to stem cell differentiation and immune system therapies. Researchers include: Drs. Deem, Diehl, Grande-Allen, Igoshin, Jacot, Levine, Ma, Mikos, Raphael, San, Tabor, and Zhang.

Tissue Engineering and Biomechanics
Research efforts in this area are focused on the 1) understanding of biochemical, molecular, cellular, and biomechanical characteristics of normal and diseased tissues; 2) design and fabrication of novel scaffolds; and 3) development of optimal culturing conditions for tissue engineered constructs. The effects of mechanical stimulus are being investigated from the level of single-cell gene expression to tissue mechanical properties. Scaffold designs incorporate novel biomaterials, bioactive molecules and combinatorial variations in subunit scaffold micro-architecture. Culture conditions involving biochemical and mechanical cues are being optimized for engineering bone, cartilage, heart valves and small-diameter vascular grafts. Researchers include: Drs. Grande-Allen, Mikos, Miller, Suh, and Veiseh.

RESEARCH FACILITIES

The Department of Bioengineering is housed in a 477,000 square-foot research facility called the BioScience Research Collaborative (BRC). Located at the border between the Rice campus and the Texas Medical Center (TMC), the interdisciplinary research facility is a reflection of Rice’s Vision of the Second Century and is shared with member institutions of the TMC. The center represents a major investment toward reaffirming our long-term history and positioning as one of the most powerful bioscience and biomedical research efforts in the world.

The BRC facility provides common areas for technical laboratory facilities and includes a broad range of research and computing equipment. A core lab facility called BioSEA has mass spectrophotometers, transmission electron microscopes, a microscopy center and nuclear magnetic resonance spectrometers. In addition, graduate students have access to campus supercomputing facilities as well as core equipment and facilities via the Rice Shared Equipment Authority program and the Ken Kennedy Institute for Information Technology. State-of-the-art research facilities include: tissue culture, confocal/electron/video microscopy, mass spectrometry, TIRF microscopy, flow cytometry, polymer synthesis, materials characterization and testing, mechanical testing, histology, electrophysiology, biomedical lasers, optical tweezers, micro-CT and many others.

CENTERS AND INSTITUTES

Bioengineering faculty and graduate students benefit from membership in centers and institutes at Rice, including the BioScience Research Collaborative (BRC), Institute of Biosciences and Bioengineering (IBB), the Richard E. Smalley Institute for Nanoscale Engineering, and of Bioengineering.

Jacob Robinson. Assistant Professor, Electrical and Computer Engineering, and of Bioengineering
Laura Segatori. Associate Professor, Chemical and Biomolecular Engineering, and Bioengineering
Jonathan (Joff) Silberg. Associate Professor, BioSciences and of Bioengineering

Frank Tittel. J.S. Abercrombie Professor of Electrical and Computer Engineering, Professor of Bioengineering
Aryeh Warmflash. Assistant Professor, BioSciences and of Bioengineering
Kyriacos Zygourakis. A.J. Hartsook Professor of Chemical Engineering, Professor of Bioengineering

Researchers include: Drs. Bao, Deem, Diehl, Grande-Allen, Igoshin, Jacot, Levine, Ma, Mikos, Raphael, San, Tabor, and Zhang.
Science and Technology, the Nanomedicine Center for Nucleoprotein Machines, the Center for Theoretical Biological Physics (CTBP), the Center for Biological and Environmental Nanotechnology (CBEN), Rice 360°: Institute for Global Health, the Center for Excellence in Tissue Engineering (CETE), the Ken Kennedy Institute for Information Technology, and the Keck Center, which is the training arm of the Gulf Coast Consortia (GCC).

ADMISSION
Admission to the graduate program is competitive, and the Graduate Admissions Committee uses both quantitative and qualitative factors in its decision process. In addition to GRE and TOEFL scores, academic records, personal statement and letters of recommendation are included in the evaluation.

STIPENDS AND FELLOWSHIPS
All Ph.D. students in the program are supported by competitive stipends through a range of fellowships, scholarships and assistantships. In addition, tuition for Ph.D. students is waived. M.B.E. students are not eligible for financial support through the department.

Students also may apply for competitive fellowships in graduate training programs administered at Rice. The Institute of Biosciences and Bioengineering (IBB) launched a new training program for pre-and postdoctoral fellows in interdisciplinary translational cancer nanotechnology (MDACC-Rice T32 Program). The program, which is funded by the NIH's National Cancer Institute, is based on a close collaboration between the University of Texas MD Anderson Cancer Center and Rice University. The program features an intensive two-year research experience and training in cancer nanotechnology. The deadline to apply is May 31. Learn more at: www.ibb.rice.edu

Additional programs include the NSF IGERT in Neuroengineering from Cells to Systems (www.neuroengineeringigert.rice.edu), and several training programs through the Keck Center (www.gulfcoastconsortia.org).

To provide Ph.D. students time to learn about ongoing research in the department and to select their thesis adviser, we are pleased to offer stipend support for the first two semesters. The Ph.D. students are supported thereafter through their adviser's research grants or competitive fellowships.

DEGREE REQUIREMENTS
Most students admitted to the Rice graduate program in bioengineering follow a course of study that leads directly to the Ph.D. degree. The graduate degree curriculum has three components: foundation, supporting and advanced topics courses. Collectively, these components afford students broad exposure to their chosen field of research. Students initially reinforce their knowledge through foundation courses in bioengineering. With the help of their thesis adviser, students plan a coherent course of study that is most appropriate to their research work from among the wide range of supporting and advanced topics courses available. A variety of courses available reflect the diverse research interests within the Department of Bioengineering.

Doctor of Philosophy (Ph.D.)
The Ph.D. candidate in bioengineering must:

- Prerequisites: Fundamentals of System Physiology, Cell Biology, and Statistics. These courses must be taken during undergraduate training, or they will be additional requirements for the Ph.D. degree.
- Complete 30 semester hours of foundation, supporting and advanced topics courses; 15 of these credit hours must be graduate level 500 or higher BIOE courses.
- Maintain an average GPA of 3.2 or higher.
- Complete 2.5 semesters as a teaching assistant for six to ten hours per week.
- Prepare a thesis proposal and present it to the thesis committee.
- Complete a publishable thesis representing research that is an original and significant contribution to a field of bioengineering.
- Pass a public oral examination in defense of the thesis.

Medical Scientist Training Program (M.D./Ph.D.)
Rice University and the Baylor College of Medicine have collaborated for over 30 years to administer the Medical Scientist Training Program (MSTP). Students in the MSTP program receive their Ph.D. in bioengineering from Rice and their M.D. from Baylor. Many of these students are jointly advised by Rice bioengineering faculty and Baylor clinical faculty. Students must initiate their application through Baylor. Visit: www bcm.edu/mstp
Master of Bioengineering (M.B.E.)
The Master of Bioengineering (M.B.E.) is a nonthesis degree that provides students with greater depth in their bioengineering training to advance their career objectives.

The degree has two tracks - the *Global Medical Innovation* track and the *Applied Bioengineering* track. Both require 30 credit hours of study, and will result in the M.B.E. degree.

Prerequisites are: *Fundamentals of Systems Physiology, Cell Biology,* and *Statistics.* These courses must be taken during undergraduate training, or they will be additional requirements for the M.B.E. degree.

Global Medical Innovation (GMI)
The *Global Medical Innovation (GMI)* track is designed specifically for students who want to pursue a career in the global medical technology industry. The GMI track curriculum consists of:

- Two consecutive semesters of innovation education with integrated emerging-market design projects (18 credits);
- An internship, which may be completed during the summer (full time) or during the fall and spring semesters (part time). See the GMI internship blog at www.gmi.rice.edu (6 credits);
- One graduate-level course in MATH, CAAM, or STAT (3 credits, 400-level courses may be considered); and
- One elective graduate-level BIOE course (3 credits).

- Maintain an average GPA of 3.2 or higher.

Applied Bioengineering Track
The *Applied Bioengineering* track, which is designed as a flexible degree for students who want to pursue careers in research, medicine or related fields. The Bioengineering Department offers graduate-level courses in Biomaterials and Drug Delivery, Biomedical Imaging and Diagnostics, Computational and Theoretical Bioengineering, Tissue Engineering and Biomechanics, and Systems and Synthetic Biology.

- Complete 30 credit hours of courses at the 500 level or above, including at least 15 credit hours of graduate level bioengineering courses. A minimum of 24 of the 30 credit hours must be taken at Rice.
 - Graduate-level or above MATH, STAT or CAAM (3 credit hours at the 400 level or above)
 - Nine elective professional-development credit hours chosen from a specific list of approved courses
 - Three general elective credit hours
- Maintain an average GPA of 3.0 or higher.

HOW TO APPLY

Doctor of Philosophy (Ph.D.) Program
The application deadline for the Ph.D. program is December 20. Students are strongly advised to check bioe.rice.edu for official dates. (It is best to start the application process before September of the year applying.) Apply online at: https://bioegradapps.rice.edu/

Masters in Bioengineering Program (M.B.E.)
The application deadline for the GMI track is January 15 for fall admission.

Applications for the Applied Bioengineering track are due by October 30 for spring admission and April 30 for fall admission. Apply online at: http://bioegradapps.rice.edu.

Students may enroll for the Applied Bioengineering track on a full-time or part-time basis. Students may only enroll on a full-time basis for the GMI track.

Students currently in the bioengineering program at Rice must contact the department (ges2@rice.edu or 713-348-5063) for specific instructions regarding submission of your application.

In addition to the application, all Ph.D. and M.B.E. candidates must submit the following items to the Graduate Admissions Committee:

- Transcripts from all undergraduate and graduate schools attended;
- At least three letters of recommendation from teachers and advisers;
- GRE scores and TOEFL scores (TOEFL is required for students who have not received a degree from a university in the U.S. or where English is not the official language of instruction. Make arrangements with the Educational Testing Service at www.ets.org or International English Testing Service [IELTS] at www.ielts.org to have official test scores sent to Rice.); and
- An application fee of $85.

Submit all inquiries and application materials to:

Rice University
Graduate Admissions Committee
Bioengineering Department–MS 142
P.O. Box 1892
Houston, Texas 77251-1892
Phone: 713-348-5869 (x5063)
Fax: 713-348-5877
E-mail: bioeng@rice.edu
Web site for more information: www.bioe.rice.edu

Courier deliveries should be sent to:

Rice University
Graduate Admissions Committee
Bioengineering Department–MS 142
6500 Main Street
Houston, TX 77005
ABOUT RICE AND HOUSTON

Rice is a leading American research university—small, private and highly selective—distinguished by a collaborative, interdisciplinary culture and a global perspective. Only a few miles from downtown Houston, it occupies an architecturally distinctive, 285-acre campus shaded by nearly 4,000 trees. State-of-the-art facilities and laboratories, internationally renowned centers and institutes and one of the country’s largest endowments support an ideal learning and living environment.

The university attracts a diverse group of highly talented students and faculty with outstanding graduate and professional programs in the humanities, social sciences, natural sciences, engineering, architecture, music and business. With just 2,374 graduate students and 3,708 undergraduates, it offers an unusual opportunity to forge close relationships with eminent faculty scholars and researchers and the option to tailor graduate programs to specific interests.

Houston offers all the expected educational, cultural and commercial advantages of a large urban center, and more. It is home of the Texas Medical Center, the largest concentration of medical schools, hospitals and research facilities in the world, as well as several other universities. Rice has cooperative programs with the University of Houston, Baylor College of Medicine, the University of Texas M.D. Anderson Cancer Center, the University of Texas Health Science Center and the University of Texas Medical Branch at Galveston. Houston is one of the few U.S. cities with resident companies in all four major performing arts—drama, ballet, opera and symphony. It also boasts a museum district featuring exhibits of national and international prominence.

As urban as it is, Houston also is a surprisingly green city. Houstonians enjoy the outdoors in more than 300 municipal parks and 120 open spaces, and many frequent the beach at Galveston Island, only a 45-minute drive away. Other short trips include Austin, the state’s capital, and historic San Antonio, both of which are a little more than three hours away.

MORE INFORMATION

Rice University homepage: www.rice.edu
George R. Brown School of Engineering homepage: www.engr.rice.edu
Rice University Office of Graduate and Postdoctoral Studies homepage: www.graduate.rice.edu

Graduate Student Association homepage: gsa.rice.edu
City of Houston homepage: www.houstontx.gov
Houston information from the Houston Chronicle: www.chron.com
Houston information from Microsoft Citysearch: www.houston.citysearch.com